

### Death of Disk Panel

Ted Wobber
MSR Silicon Valley
August 10, 2011

### Disks over the Years

|                                   | Mid-<br>1980s | 2009     | Improvement |
|-----------------------------------|---------------|----------|-------------|
| Disk capacity                     | 30 MB         | 500 GB   | 16667x      |
| Maximum transfer rate             | 2 MB/s        | 100 MB/s | 50x         |
| Latency (seek + rotate)           | 20 ms         | 10 ms    | 2x          |
| Capacity/bandwidth (large blocks) | 15 s          | 5000 s   | 333x worse  |
| Capacity/bandwidth (1KB blocks)   | 600 s         | 58 days  | 8333x worse |
| Jim Gray's Rule [11] (1KB blocks) | 5 min.        | 30 hours | 360x worse  |

Source: J. Ousterhout et al., The Case for RAMClouds: Scalable High-Performance Storage Entirely in DRAM, SIGOPS Operating Systems Review 43(4).



## Are Disks Really Dead?

- What are the other options?
  - Tape
  - SSDs
  - Big Memory (e.g., RAMCloud)
  - Phase-Change Memory
  - Spintronics (aka MRAM, Racetrack)



## Tape

- 4 Terabytes (per cartridge) uncompressed
- Less than \$.10 per Gbyte
- ~250 MByte/s bandwidth (uncompressed)
- Seek latency in seconds to minutes
- Power: 51 watts
- Cost: \$43,000 (+ shuttle and media costs) = ~\$200K
- Combined with shuttle: 900 PBytes





# Disk



| • | 6-Gb/s SAS/SATA drives             | \$440                 | \$220                 |
|---|------------------------------------|-----------------------|-----------------------|
| • | Capacity (GB):                     | 600                   | 2000                  |
| • | Spin Speed (RPM):                  | 15,000                | 7200                  |
| • | Average latency (ms):              | 2.0                   | 4.2                   |
| • | Random read seek time (ms):        | 3.4                   | 8.5                   |
| • | Random write seek time (ms):       | 3.9                   | 9.5                   |
| • | I/O data transfer (sustained max): | 204MB/s               | 150MB/s               |
| • | Unrecoverable read errors:         | 1 in 10 <sup>16</sup> | 1 in 10 <sup>15</sup> |
| • | Average idle power:                | 11.68W                | 5.69W                 |
| • | Average operating power:           | 16.35W                | 9.57W                 |



### SSD

TO SE CE OF THE PARTY OF THE PA

• 6 Gb SATA drive ~\$550

• Capacity: 240 GB

Sequential Read 510 MB/s

Sequential Write 240 MB/s

4KB Random Read 58,500 IOPS (230 MB/s)

4KB Random Write 48,500 IOPS (190 MB/s)

Power Idle: 1.65 Watts; Active: 3 Watts



## SSDs (cont)

- NAND flash is a odd animal
  - No over-write (OS TRIM support important)
  - Erase at 64-256x granularity of write
  - Limited erase cycles (~3-5K for MLC, 100K for SLC)
  - Read disturb / write disturb
  - Retention varies inversely with wear
  - Error correction vs. scale
  - FTL idiosyncrasies (compaction, wear-leveling)
- SSD market is becoming quite specialized
- SLC disappearing at low end

## **Big Memory**

- For example, RAMCloud (Ousterhout, et al.)
- Clusters of RAM; very low latency
- Example configuration\* (2009 pricing):

1000 servers @ 64 GB/server

Capacity: 64 TB

Total cost: \$4M

Cost/GB: \$60

Throughput: 10<sup>9</sup> ops/sec





<sup>\*</sup> From: J. Ousterhout et al., The Case for RAMClouds: Scalable High-Performance Storage Entirely in DRAM, SIGOPS Operating Systems Review 43(4).

## PCM + Spintronics

#### Phase change memory

- Resistance differences between crystalline and amorphous states
- Factor of 10-100 in speed, and endurance compared to flash
- Byte addressable
- Thermal process: high current density; expansion/contraction border
- 128Mb parts currently (at 90nm)

#### Spintronics

- Magnetic-resistive memory (e.g., MRAM, RaceTrack)
- Very good scale, speed, and endurance compared to flash
- Gigabit chips in 3-4 year at ~DRAM cost

# Some Comparisons

■ Tape ■ 7.2K Disk ■ 15K Disk ■ SSD ■ RAMCloud



## On the Merits

| Tape                                                                      | Disk                                                                         | SSD                                                                                                                               | Big Memory                                                                           |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| <ul><li>Huge capacity</li><li>Offline storage</li><li>Streaming</li></ul> | <ul><li>Cheap bandwidth with capacity</li><li>Sequential workloads</li></ul> | <ul> <li>IOPS         <ul> <li>(Metadata, swapping, caching)</li> </ul> </li> <li>Read-mostly workloads</li> <li>Power</li> </ul> | <ul> <li>Distributed transactions</li> <li>Distributed strong consistency</li> </ul> |



## Servers and Disks



# Servers and Storage Controllers



## Servers and SCs and SANs



### Servers and SCs and SSDs



# Servers and Flash Appliances

- Better power profile
- Well-tuned to flash
- SAN-interconnect is now bottleneck



#### Do It in Parallel!

- Solid-state storage components have huge bandwidth / IOPS in aggregate
- Centralized storage controllers work hard to keep up
- Available BW / IOPS overwhelm single compute nodes
- How can we best distribute and consume these I/O resources?



### Flash Clusters

(CORFU: Clusters of Replicated Flash Units)

- Cluster of low-cost, low-power network attached flash
- Organized as a log to support distributed data consistency



## Is Disk Really Dead?

- Replaced by Tape?
  - SERIOUSLY?: Tape has huge capacity, but high latency, high power consumption, fragile infrastructure, and high bandwidth cost
- Replaced by Flash?
  - NO: Power tradeoffs are nice, great IOP/s, but high cost per GB; scale-down difficulties; durability questions (especially for MLC)
- Replaced by other solid-state?
  - PROBABLY, but over time. Too soon to tell.
- Replaced by Big Memory?
  - NO: High memory cost, power, persistence.



## Conclusion: No Surprises

Evolutionary change is the rule

 Solid-state devices will slowly displace disk for many, but not all, things

 Solid-state devices will drive innovation with respect to interconnect

